42 research outputs found

    Taxonomy for Humans or Computers? Cognitive Pragmatics for Big Data

    Get PDF
    Criticism of big data has focused on showing that more is not necessarily better, in the sense that data may lose their value when taken out of context and aggregated together. The next step is to incorporate an awareness of pitfalls for aggregation into the design of data infrastructure and institutions. A common strategy minimizes aggregation errors by increasing the precision of our conventions for identifying and classifying data. As a counterpoint, we argue that there are pragmatic trade-offs between precision and ambiguity that are key to designing effective solutions for generating big data about biodiversity. We focus on the importance of theory-dependence as a source of ambiguity in taxonomic nomenclature and hence a persistent challenge for implementing a single, long-term solution to storing and accessing meaningful sets of biological specimens. We argue that ambiguity does have a positive role to play in scientific progress as a tool for efficiently symbolizing multiple aspects of taxa and mediating between conflicting hypotheses about their nature. Pursuing a deeper understanding of the trade-offs and synthesis of precision and ambiguity as virtues of scientific language and communication systems then offers a productive next step for realizing sound, big biodiversity data services

    Object spaces: An organizing strategy for biological theorizing

    Get PDF
    A classic analytic approach to biological phenomena seeks to refine definitions until classes are sufficiently homogenous to support prediction and explanation, but this approach founders on cases where a single process produces objects with similar forms but heterogeneous behaviors. I introduce object spaces as a tool to tackle this challenging diversity of biological objects in terms of causal processes with well-defined formal properties. Object spaces have three primary components: (1) a combinatorial biological process such as protein synthesis that generates objects with parts that are modular, independent, and organized according to an invariant syntax; (2) a notion of “distance” that relates the objects according to rules of change over time as found in nature or useful for algorithms; (3) mapping functions defined on the space that map its objects to other spaces or apply an evaluative criterion to measure an important quality, such as parsimony or biochemical function. Once defined, an object space can be used to represent and simulate the dynamics of phenomena on multiple scales; it can also be used as a tool for predicting higher-order properties of the objects, including stitching together series of causal processes. Object spaces are the basis for a strategy of theorizing, discovery, and analysis in biology: as heuristic idealizations of biology, they help us transform inchoate, intractable problems into articulated, well-structured ones. Developing an object space is a research strategy with a long, successful history under many other names, and it offers a unifying but not overreaching approach to biological theory

    The Epistemology of Causal Selection: Insights from Systems Biology

    Get PDF
    Among the many causes of an event, how do we distinguish the important ones? Are there ways to distinguish among causes on principled grounds that integrate both practical aims and objective knowledge? Psychologist Tania Lombrozo has suggested that causal explanations “identify factors that are ‘exportable’ in the sense that they are likely to subserve future prediction and intervention” (Lombrozo 2010, 327). Hence portable causes are more important precisely because they provide objective information to prediction and intervention as practical aims. However, I argue that this is only part of the epistemology of causal selection. Recent work on portable causes has implicitly assumed them to be portable within the same causal system at a later time. As a result, it has appeared that the objective content of causal selection includes only facts about the causal structure of that single system. In contrast, I present a case study from systems biology in which scientists are searching for causal factors that are portable across rather than within causal systems. By paying careful attention to how these biologists find portable causes, I show that the objective content of causal selection can extend beyond the immediate systems of interest. In particular, knowledge of the evolutionary history of gene networks is necessary for correctly identifying causal patterns in these networks that explain cellular behavior in a portable way

    Pathways to pluralism about biological individuality

    Get PDF

    Explaining ambiguity in scientific language

    Get PDF

    The Practical Value of Biological Information for Research

    Get PDF

    Norms of evidence in the classification of living fossils

    Get PDF
    Some species have held fast for millions of years as constants in a changing world. Often called “living fossils,” these species capture scientific and public interest by showing us the vestiges of an earlier world. If living fossils are defined by a holistic pattern of low evolutionary rates or stasis, however, then classifying a species as a living fossil involves the application of sophisticated norms of scientific evidence. Using examples from Crocodilia and the tuatara (Sphenodon punctatus), I show how scientists’ evidential criteria for classifying living fossils are contentious and underspecified in many cases, threatening the concept’s explanatory interest and its adequacy for sustaining a collective problem agenda as proposed by Scott Lidgard and Alan Love. While debates over the definition of the living fossil concept may appear fruitless, I suggest they can be productive insofar as the debate leads to clarified and improved evidential standards for classification. To this end, I formulate a view of the living fossil concept as an investigative kind, and compare two theoretical frameworks as a basis for shared evidential norms: the Zero Force Evolutionary Law framework, introduced by Daniel McShea and Robert Brandon, and the statistical model selection framework first developed by Gene Hunt in the 2000s

    Alternatives to Realist Consensus in Bio-Ontologies: Taxonomic Classification as a Basis for Data Discovery and Integration

    Get PDF
    Big data is opening new angles on old questions about scientific progress. Is scientific knowledge cumulative? If yes, how does it make progress? In the life sciences, what we call the Consensus Principle has dominated the design of data discovery and integration tools: the design of a formal classificatory system for expressing a body of data should be grounded in consensus. Based on current approaches in biomedicine and systematic biology, we formulate and compare three types of the Consensus Principle: realist, contextual-best, and coordinative. Contrasted with the realist program of the Open Biomedical Ontologies Foundry, we argue that historical practices in systematic biology provide an important and overlooked alternative based on coordinative consensus. Systematists have developed a robust system for referring to taxonomic entities that can deliver high quality data discovery and integration without invoking consensus about reality or “settled” science
    corecore